

RV-010-001510

Seat No. _____

B. B. A. (Sem. V) (CBCS) Examination

March - 2019

510 - Operation Research - I (Old Course)

Faculty Code: 010 Subject Code: 001510

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All questions are compulsory.

- (2) Each question carries equal marks.
- (3) Use of calculator is permissible.
- 1 (a) Describe various types of research. 7
 - (b) Discuss scope of Operation Research. 7

OR

- 1 What is Research? Describe briefly the different steps 14 involved in Research process.
- 2 (a) What do you mean by non-parametric test? 7
 Explain its characteristics.
 - (b) Describe briefly U-test. 7

OR

2 Use Kruskal-Wallis test for testing the null hypothesis that a professional bowler performs equally well with the four bowling balls at 5% level of significance. The following are the results.

Results in 5 games					
A	В	C	D		
271 282 257 248 262	252 275 302 268 276	260 255 239 246 266	279 242 297 270 258		

What is mean by linear programming problem (LPP)? 14
State the assumptions, advantages and limitations of linear programming.

OR

3 Solve the following equations by Graphical method: 14 Maximize $Z = 30x_1 + 15x_2$

$$x_1 + \frac{3}{2}x_2 \le 200$$

$$2x_1 + x_2 \le 200$$

$$3x_1 \le 200$$

$$x_1, x_2 \ge 0$$

4 What do you mean by Transportation problem (T.P.)? 14 Describe any two methods for obtaining initial feasible solution.

OR

- 4 Explain MODI method for solving large transportation 14 problem.
- 5 Explain Hungarian method for solving an Assignment 14 Problem.

OR

Three jobs J_1, J_2, J_3 are to be assigned to three workers 14 among the four available A, B, C, D. The estimated costs for each of job-worker combination are given in the table below:

	Jobs		
Worker	J_1	J_2	J_3
\overline{A}	11	14	6
B	8	10	11
C	9	12	7
D	10	13	8

Determine the optimal assignment to minimize the total cost.